Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs.
نویسندگان
چکیده
Advanced maternal age is unequivocally associated with increased aneuploidy in human eggs and infertility, but the molecular basis for this phenomenon is unknown. An age-dependent deterioration of the spindle assembly checkpoint (SAC) has been proposed as a probable cause of aneuploidy. Accurate chromosome segregation depends on correct chromosome attachment to spindle microtubules, and the SAC provides time for this process by delaying anaphase onset until all chromosomes are stably attached. If SAC function decreases with age, oocytes from reproductively old mice would enter anaphase of meiosis I (AI) prematurely, leading to chromosome segregation errors and aneuploid eggs. Although intuitively appealing, this hypothesis is largely untested. We used a natural reproductive aging mouse model to determine if a defective SAC is the primary cause of aneuploidy in eggs. We tracked the progress of individual oocytes from young and old mice through meiosis I by time-lapse microscopy and counted chromosomes in the resulting eggs. This data set allowed us to correlate the timing of AI onset with aneuploidy in individual oocytes. We found that oocytes from old mice do not enter AI prematurely compared to young counterparts despite a 4-fold increase in the incidence of aneuploidy. Moreover, we did not observe a correlation between the timing of AI onset and aneuploidy in individual oocytes. When SAC function was challenged with a low concentration of the spindle toxin nocodazole, oocytes from both young and old mice arrested at meiosis I, which is indicative of a functional checkpoint. These findings indicate that a defective SAC is unlikely the primary cause of aneuploidy associated with maternal age.
منابع مشابه
Spc24 is required for meiotic kinetochore-microtubule attachment and production of euploid eggs
Mammalian oocytes are particularly error prone in chromosome segregation during two successive meiotic divisions. The proper kinetochore-microtubule attachment is a prerequisite for faithful chromosome segregation during meiosis. Here, we report that Spc24 localizes at the kinetochores during mouse oocyte meiosis. Depletion of Spc24 using specific siRNA injection caused defective kinetochore-mi...
متن کاملRole of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis.
During oogenesis, mammalian eggs accumulate proteins required for early embryogenesis. Although limited data suggest a vital role of these maternal factors in chromatin reprogramming and embryonic genome activation, the full range of their functions in preimplantation development remains largely unknown. Here we report a role for maternal proteins in maintaining chromosome stability and euploid...
متن کاملMolecular causes of aneuploidy in mammalian eggs.
Mammalian oocytes are particularly error prone in segregating their chromosomes during their two meiotic divisions. This results in the creation of an embryo that has inherited the wrong number of chromosomes: it is aneuploid. The incidence of aneuploidy rises significantly with maternal age and so there is much interest in understanding this association and the underlying causes of aneuploidy....
متن کاملCauses and consequences of maternal age-related aneuploidy in oocytes: a review
Although a positive correlation between aneuploidy and maternal age was first reported almost a century ago, the underlying mechanisms remain mostly unknown. Different hypotheses regarding age-related aneuploidy rise have been presented, but so far none of them can explain its full mechanism. Age-related aneuploidy is more likely to result from complex events taking place during the entire peri...
متن کاملDNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.
In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology of reproduction
دوره 81 4 شماره
صفحات -
تاریخ انتشار 2009